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H � �xed Hilbert space. The orthogonal projection of x ∈ H
onto subspace M ⊆ H is PMx ∈ M such that x − PMx ⊥ M .

M

PMx

x

︸
︷︷

︸

x − PMx

Problem: Does the orthogonal projection PMx exist?

The drawing suggests that

‖x − PMx‖ = dist(x ,M) := infy∈M ‖x − y‖.

Important: The above in�mum is realized at exactly one point,if
M is a closed convex set!
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A set M ⊆ H is convex, if ∀x ,y∈M∀λ∈[0,1]λx + (1− λ)y ∈ M, that is if

every interval with endpoint is M is contained in M:

M

convex M
non-convex

Thm. (On Distances from a Convex Set)

Let H be a Hilbert space. For any closed and convex M ⊆ H and a

point x ∈ H there is a unique y0 ∈ M such that ‖x − y0‖ = dist(x ,M).

Proof: �By moving� the set M we can assume that,

x = 0. Then the theorem takes the form:

In a closed and convex set M there is

exactly one element with minimal norm:

∃!y0∈M ‖y0‖ = inf
y∈M
‖y‖.
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�Existence�. Let d := inf
y∈M
‖y‖ and let {yn}∞n=1 ⊆ M such that

‖yn‖ → d . It su�ces to show that {yn}∞n=1 is Cauchy, as then by

completeness of M, the sequence is convergent to some y0 ∈ M and

then ‖y0‖ = limn→∞ ‖yn‖ = d .

‖yn − ym‖2
parallelogram
======

law
2‖yn‖2 + 2‖ym‖2 − ‖yn + ym‖2

= 2‖yn‖2 + 2‖ym‖2 − 4
∥∥ yn+ym

2

∥∥2 {
yn+ym

2 ∈ M

as M convex

¬ 2‖yn‖2 + 2‖ym‖2 − 4d2 n,m→∞−→ 2d2 + 2d2 − 4d2 = 0.

�Uniqueness�. If y1, y2 ∈ M are such that ‖y1‖ = ‖y2‖ = d , then the

above calculations show that y1 = y2. Indeed

‖y1 − y2‖2
parallelogram
======

law
2‖y1‖2 + 2‖y2‖2 − ‖y1 + y2‖2

= 2‖y1‖2 + 2‖y2‖2 − 4
∥∥ y1+y2

2

∥∥2 {
yn+ym

2 ∈ M

as M convex

¬ 2‖y1‖2 + 2‖y2‖2 − 4d2 = 2d2 + 2d2 − 4d2 = 0. �

4 / 10



Thm. On the existence of orthogonal projection

For a closed subspace M ⊆ H of the Hilbert space H and a point

x ∈ H there exists an orthogonal projection y = PMx . Moreover

‖x − y‖ = dist(x ,M) (1)

and the vector y is determined uniquely by this equality.

Proof: Since M is convex, by the previuous theorem there is exactly

one y ∈ M satisfying (1).

We need to show that x − y ⊥ M. Let z ∈ M. For t ∈ F we have

‖x − y‖2
(1)

¬
y+tz∈M

‖x − (y + tz)‖2 = ‖(x − y) + tz‖2

= ‖x − y‖2 − 2Re 〈x − y , tz〉+ |t|2‖z‖2.
Hence 0 ¬ |t|2‖z‖2 − 2Re 〈x − y , tz〉 for t ∈ F. Putting t = se iϕ,
where s ∈ R and ϕ := arg〈x − y , z〉 this inequality assumes the form

0 ¬ s2|e iϕ|2‖z‖2 − 2s Re(e−iϕ 〈x − y , z〉) = s2‖z‖2 − 2s| 〈x − y , z〉 |.
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So the quadratic function f (s) = s2‖z‖2 − 2s| 〈x − y , z〉 | is
nonnegative. Since f (0) = 0, its discriminant ∆ = 4|〈x − y , z〉|2 has to

be zero. Thus 〈x − y , z〉 = 0, that is x − y ⊥ z . �

Cor. (Hilbert space decomposition) For any closed subspace M of

the Hilbert space H we have

H = M ⊕M⊥,

that is ∀x∈H ∃!y∈M∃!z∈M⊥ x = y + z .

Proof: Let x ∈ H. Put y := PMx and z := x − y . Then x = y + z and

from the de�nition of projection we have y ∈ M and x − y ⊥ M, i.e.

z ∈ M⊥. To show the uniqueness of this decomposition let us assume

that x = y ′ + z ′ for some y ′ ∈ M and z ′ ∈ M⊥. Then

y − y ′ = z ′ − z .

But y − y ′ ∈ M, z − z ′ ∈ M⊥ and M ∩M⊥ = {0} (zero is the only

isotropic vector). Hence y = y ′ and z = z ′. �
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Rem. The above corollary can also be written as

1 = PM + PM⊥ ,

where 1 is the identity operator on H and PM is the map
H 3 x → PMx ∈ M ⊆ H . In particular, if PM is the orthogonal
projection onto a closed subspace M , then 1− PM is the
projection onto its orthogonal complement M⊥:

PM⊥ = 1− PM .

Cor. (M⊥)⊥ = M for any closed subspace M ⊆ H .

Proof: P(M⊥)⊥ = 1− PM⊥ = 1− (1− PM) = PM . �

Prop. The orthogonal projection PM is a bounded linear operator
of norm 1 (unless M = {0} and then PM ≡ 0).

Proof: ...
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�Linearity�. Let x , y ∈ H and α, β ∈ F. We want to show that

PM(αx + βy) = αPMx + βPMy . By de�nition PM(αx + βy) is the

unique element in M such that (αx + βy)− PM(αx + βy) ⊥ M. It is

therefore su�cient to show that the vector αPMx + βPMy has the

same properties. It is clear that αPMx + βPMy ∈ M as M is a linear

space. From the linearity of the inner product, for z ∈ M we get

〈(αx + βy)− (αPMx + βPMy), z〉 = α〈x − PMx , z〉+ β〈y − PMy , z〉
= 0,

because x − PMx and y − PMy are orthogonal to M by de�nition of

projection. Hence (αx + βy)− (αPMx + βPMy) ⊥ M.

�Boundedness�. For any x ∈ H we have

‖PMx‖2 ¬ ‖PMx‖2 + ‖PM⊥x‖2 =
Pitagoras

= ‖PMx + PM⊥x‖2

1=PM+P
M⊥= ‖x‖2.

Thus ‖PM‖ ¬ 1. If PM 6= 0, then M 6= {0} and there is x ∈ M with

norm 1. Since PMx = x , we get ‖PMx‖ = ‖x‖ = 1, and so ‖PM‖ ­ 1.

Hence ‖PM‖ = 1. �
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Thm. Let P : H → H be a linear idempotent, that is P2 = P . TCAE:

(1) P is an orthogonal projection (onto PH),

(2) P is self-adjoint, i.e. ∀x ,y∈H 〈Px , y〉 = 〈x ,Py〉 (P = P∗),

(3) P is a contraction, i.e. ‖P‖ ¬ 1 (more precisely ‖P‖ = 1 or P = 0).

Proof: (1)⇒(2). For x , y ∈ H we have

〈Px , y〉 y=Py+(1−P)y
= 〈Px ,Py〉+ 〈Px , (1− P)y〉 PH⊥(1−P)H

= 〈Px ,Py〉
PH⊥(1−P)H

= 〈Px ,Py〉+ 〈(1− P)x ,Py〉 x=Px+(1−P)x
= 〈x ,Py〉.

(2)⇒(3). For any x ∈ H we get

‖Px‖2 = 〈Px ,Px〉 (2)= 〈P(Px), x〉 P
2=P
= 〈Px , x〉

Schwartz
¬ ‖Px‖ · ‖x‖.

(3)⇒(1). We need to show that x − Px ⊥ PH dla x ∈ H.
Hint: Let x ∈ kerP and y ∈ PH. Then for t ∈ F we get

‖y‖2 = ‖Py + tPx‖2 = ‖P(y + tx)‖2
‖P‖¬1
¬ ‖y + tx‖2 = ‖y‖2 + 2Re t〈x , y〉+ |t|2‖x‖2.

Hence f (s) = 2s|〈x , y〉|+ s2‖x‖2 ­ 0, which implies that 〈x , y〉 = 0.
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Let H = L2(µ), where (Ω,Σ, µ) is a measure space.

Ex. (Multiplication by an indicator function)

If A ∈ Σ, then M := {f ∈ L2(µ) : f is zero outside A} is a closed

subspace of H, and the orthogonal projection from L2(µ) onto M is the

operator of multiplication by the indicator function 1A of A:

PM f = 1A · f , f ∈ L2(µ)

Ex. (Conditional expectation)

If F is a σ-subalgebra of Σ, M := {f ∈ L2(µ) : f is F-measurable} is a
closed subspace of H. The orthogonal projection from L2(µ) onto M.

in probability theory is called the conditional expected value with

respect to F

PM f = E (f ,F), f ∈ L2(µ).

(1) PM f is F-measurable for every f ∈ L2(µ),

(2)
∫
A PM f dµ =

∫
A f dµ for A ∈ F and f ∈ L2(µ).
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