# Functional Analysis

#### Bartosz Kwaśniewski

Faculty of Mathematics, University of Białystok

Lecture 8

Orthogonal projection II

math.uwb.edu.pl/~zaf/kwasniewski/teaching

H – fixed Hilbert space. The **orthogonal projection** of  $x \in H$  onto subspace  $M \subseteq H$  is  $P_M x \in M$  such that  $x - P_M x \perp M$ .



**Problem:** Does the orthogonal projection  $P_{MX}$  exist?

The drawing suggests that

$$||x - P_M x|| = dist(x, M) := \inf_{y \in M} ||x - y||.$$

**Important**: The above infimum is realized at exactly one point, if M is a closed convex set!

A set  $M \subseteq H$  is **convex**, if  $\forall_{x,y \in M} \forall_{\lambda \in [0,1]} \lambda x + (1-\lambda)y \in M$ , that is if every interval with endpoint is M is contained in M:





### Thm. (On Distances from a Convex Set)

Let H be a Hilbert space. For any closed and convex  $M \subseteq H$  and a point  $x \in H$  there is a unique  $y_0 \in M$  such that  $||x - y_0|| = dist(x, M)$ .

**Proof:** "By moving" the set M we can assume that x = 0. Then the theorem takes the form:

In a closed and convex set M there is exactly one element with minimal norm:

$$\exists !_{y_0 \in M} \|y_0\| = \inf_{v \in M} \|y\|.$$



"Existence". Let  $d:=\inf_{y\in M}\|y\|$  and let  $\{y_n\}_{n=1}^\infty\subseteq M$  such that

 $\|y_n\| \to d$ . It suffices to show that  $\{y_n\}_{n=1}^{\infty}$  is Cauchy, as then by completeness of M, the sequence is convergent to some  $y_0 \in M$  and then  $\|y_0\| = \lim_{n \to \infty} \|y_n\| = d$ .

$$\begin{aligned} \|y_n - y_m\|^2 & \xrightarrow{\frac{\mathsf{parallelogram}}{\mathsf{law}}} 2\|y_n\|^2 + 2\|y_m\|^2 - \|y_n + y_m\|^2 \\ &= 2\|y_n\|^2 + 2\|y_m\|^2 - 4\left\|\frac{y_n + y_m}{2}\right\|^2 \quad \begin{cases} \frac{y_n + y_m}{2} \in M \\ \mathsf{as} \ M \ \mathsf{convex} \end{cases} \\ &\leqslant 2\|y_n\|^2 + 2\|y_m\|^2 - 4d^2 \xrightarrow{n, m \to \infty} 2d^2 + 2d^2 - 4d^2 = 0. \end{aligned}$$

"Uniqueness". If  $y_1$ ,  $y_2 \in M$  are such that  $||y_1|| = ||y_2|| = d$ , then the above calculations show that  $y_1 = y_2$ . Indeed

$$\begin{split} \|y_1 - y_2\|^2 & \xrightarrow{\frac{\mathsf{parallelogram}}{\mathsf{law}}} 2\|y_1\|^2 + 2\|y_2\|^2 - \|y_1 + y_2\|^2 \\ &= 2\|y_1\|^2 + 2\|y_2\|^2 - 4\left\|\frac{y_1 + y_2}{2}\right\|^2 \quad \begin{cases} \frac{y_n + y_m}{2} \in M \\ \mathsf{as}\ M\ \mathsf{convex} \end{cases} \\ &\leqslant 2\|y_1\|^2 + 2\|y_2\|^2 - 4d^2 = 2d^2 + 2d^2 - 4d^2 = 0. \end{split}$$

### Thm. On the existence of orthogonal projection

For a closed subspace  $M \subseteq H$  of the Hilbert space H and a point  $x \in H$  there exists an orthogonal projection  $y = P_M x$ . Moreover

$$||x - y|| = dist(x, M) \tag{1}$$

and the vector y is determined uniquely by this equality.

**Proof:** Since M is convex, by the previous theorem there is exactly one  $y \in M$  satisfying (1).

We need to show that  $x-y\perp M$ . Let  $z\in M$ . For  $t\in \mathbb{F}$  we have

$$||x - y||^2 \leqslant ||x - (y + tz)||^2 = ||(x - y) + tz||^2$$
  
=  $||x - y||^2 - 2 \operatorname{Re} \langle x - y, tz \rangle + |t|^2 ||z||^2.$ 

Hence  $0 \le |t|^2 ||z||^2 - 2 \operatorname{Re} \langle x - y, tz \rangle$  for  $t \in \mathbb{F}$ . Putting  $t = se^{i\varphi}$ , where  $s \in \mathbb{R}$  and  $\varphi := \arg \langle x - y, z \rangle$  this inequality assumes the form

$$0 \leqslant s^2 |e^{i\varphi}|^2 ||z||^2 - 2s \operatorname{Re}(e^{-i\varphi} \langle x - y, z \rangle) = s^2 ||z||^2 - 2s |\langle x - y, z \rangle|.$$

So the quadratic function  $f(s) = s^2 ||z||^2 - 2s |\langle x-y,z\rangle|$  is nonnegative. Since f(0) = 0, its discriminant  $\Delta = 4 |\langle x-y,z\rangle|^2$  has to be zero. Thus  $\langle x-y,z\rangle = 0$ , that is  $x-y \perp z$ .

**Cor.** (Hilbert space decomposition) For any closed subspace M of the Hilbert space H we have

$$H=M\oplus M^{\perp},$$

that is  $\forall_{x \in H} \exists !_{y \in M} \exists !_{z \in M^{\perp}} x = y + z$ .

**Proof:** Let  $x \in H$ . Put  $y := P_M x$  and z := x - y. Then x = y + z and from the definition of projection we have  $y \in M$  and  $x - y \perp M$ , i.e.  $z \in M^{\perp}$ . To show the uniqueness of this decomposition let us assume that x = y' + z' for some  $y' \in M$  and  $z' \in M^{\perp}$ . Then

$$y-y'=z'-z.$$

But  $y-y'\in M$ ,  $z-z'\in M^\perp$  and  $M\cap M^\perp=\{0\}$  (zero is the only isotropic vector). Hence y=y' and z=z'.

Rem. The above corollary can also be written as

$$1 = P_M + P_{M^{\perp}},$$

where 1 is the identity operator on H and  $P_M$  is the map  $H \ni x \to P_M x \in M \subseteq H$ . In particular, if  $P_M$  is the orthogonal projection onto a closed subspace M, then  $1 - P_M$  is the projection onto its orthogonal complement  $M^{\perp}$ :

$$P_{M^{\perp}} = 1 - P_{M}$$
.

**Cor.**  $(M^{\perp})^{\perp} = M$  for any closed subspace  $M \subseteq H$ .

Proof: 
$$P_{(M^{\perp})^{\perp}} = 1 - P_{M^{\perp}} = 1 - (1 - P_M) = P_M$$
.

**Prop.** The orthogonal projection  $P_M$  is a bounded linear operator of norm 1 (unless  $M = \{0\}$  and then  $P_M \equiv 0$ ).

Proof: ...

"Linearity". Let  $x, y \in H$  and  $\alpha, \beta \in \mathbb{F}$ . We want to show that  $P_M(\alpha x + \beta y) = \alpha P_M x + \beta P_M y$ . By definition  $P_M(\alpha x + \beta y)$  is the unique element in M such that  $(\alpha x + \beta y) - P_M(\alpha x + \beta y) \perp M$ . It is therefore sufficient to show that the vector  $\alpha P_M x + \beta P_M y$  has the same properties. It is clear that  $\alpha P_M x + \beta P_M y \in M$  as M is a linear space. From the linearity of the inner product, for  $z \in M$  we get  $\langle (\alpha x + \beta y) - (\alpha P_M x + \beta P_M y), z \rangle = \alpha \langle x - P_M x, z \rangle + \beta \langle y - P_M y, z \rangle$ = 0.

because  $x - P_M x$  and  $y - P_M y$  are orthogonal to M by definition of projection. Hence  $(\alpha x + \beta y) - (\alpha P_M x + \beta P_M y) \perp M$ .

"Boundedness". For any  $x \in H$  we have

$$||P_{M}x||^{2} \le ||P_{M}x||^{2} + ||P_{M^{\perp}}x||^{2} = \sum_{Pitagoras} = ||P_{M}x + P_{M^{\perp}}x||^{2}$$

$$= \sum_{Pitagoras} = ||P_{M}x + P_{M^{\perp}}x||^{2}$$

Thus  $||P_M|| \le 1$ . If  $P_M \ne 0$ , then  $M \ne \{0\}$  and there is  $x \in M$  with norm 1. Since  $P_M x = x$ , we get  $||P_M x|| = ||x|| = 1$ , and so  $||P_M|| \ge 1$ . Hence  $||P_M|| = 1$ .

**Thm.** Let  $P: H \to H$  be a linear idempotent, that is  $P^2 = P$ . TCAE:

- P is an orthogonal projection (onto PH),
- ② P is self-adjoint, i.e.  $\forall_{x,y \in H} \langle Px, y \rangle = \langle x, Py \rangle$   $(P = P^*)$ ,
- **9** P is a contraction, i.e.  $||P|| \le 1$  (more precisely ||P|| = 1 or P = 0).

**Proof**: (1) $\Rightarrow$ (2). For  $x, y \in H$  we have

$$\langle Px, y \rangle \stackrel{y = Py + (1 - P)y}{=} \langle Px, Py \rangle + \langle Px, (1 - P)y \rangle \stackrel{PH \perp (1 - P)H}{=} \langle Px, Py \rangle$$

$$\stackrel{PH \perp (1 - P)H}{=} \langle Px, Py \rangle + \langle (1 - P)x, Py \rangle \stackrel{x = Px + (1 - P)x}{=} \langle x, Py \rangle.$$

 $(2)\Rightarrow(3)$ . For any  $x\in H$  we get

$$\|Px\|^2 = \langle Px, Px \rangle \stackrel{(2)}{=} \langle P(Px), x \rangle \stackrel{P^2 = P}{=} \langle Px, x \rangle \stackrel{Schwartz}{\leqslant} \|Px\| \cdot \|x\|.$$

(3) $\Rightarrow$ (1). We need to show that  $x - Px \perp PH$  dla  $x \in H$ . Hint: Let  $x \in \ker P$  and  $y \in PH$ . Then for  $t \in \mathbb{F}$  we get

Time. Let X e kerr and y e rr. Then for the we get

$$||y||^2 = ||Py + tPx||^2 = ||P(y + tx)||^2 \stackrel{||P|| \le 1}{\le} ||y + tx||^2 = ||y||^2 + 2\operatorname{Re} t\langle x, y \rangle + |t|^2 ||x||^2.$$

Hence  $f(s) = 2s|\langle x, y \rangle| + s^2||x||^2 \ge 0$ , which implies that  $\langle x, y \rangle = 0$ .

Let  $H=L^2(\mu)$ , where  $(\Omega, \Sigma, \mu)$  is a measure space.

## Ex. (Multiplication by an indicator function)

If  $A \in \Sigma$ , then  $M := \{ f \in L^2(\mu) : f \text{ is zero outside } A \}$  is a closed subspace of H, and the orthogonal projection from  $L^2(\mu)$  onto M is the operator of multiplication by the indicator function  $\mathbb{1}_A$  of A:

$$P_M f = 1_A \cdot f, \qquad f \in L^2(\mu)$$

#### Ex. (Conditional expectation)

If  $\mathcal F$  is a  $\sigma$ -subalgebra of  $\Sigma$ ,  $M:=\{f\in L^2(\mu): f \text{ is } \mathcal F\text{-measurable}\}$  is a closed subspace of H. The orthogonal projection from  $L^2(\mu)$  onto M. in probability theory is called the **conditional expected value** with respect to  $\mathcal F$ 

$$P_M f = E(f, \mathcal{F}), \qquad f \in L^2(\mu).$$

- (1)  $P_M f$  is  $\mathcal{F}$ -measurable for every  $f \in L^2(\mu)$ ,
- (2)  $\int_A P_M f \ d\mu = \int_A f \ d\mu$  for  $A \in \mathcal{F}$  and  $f \in L^2(\mu)$ .