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H — fixed Hilbert space. The orthogonal projection of x € H
onto subspace M C H is Pyx € M such that x — Pyx L M.
X

' o X — Pyx
PMX
M
Problem: Does the orthogonal projection Pyx exist? |

The drawing suggests that
|x = Pux|| = dist(x, M) :=inf,cpm ||x — y]|.

Important: The above infimum is realized at exactly one point,if

M is a closed convex set! 20



A set M C H is convex, if Yy yemVepp)Ax + (L — A)y € M, that is if
every interval with endpoint is M is contained in M:

/ convex -. /I\/I \
f non-convex %\

U / N —H“T'J

Thm. (On Distances from a Convex Set)

Let H be a Hilbert space. For any closed and convex M C H and a
point x € H there is a unique yo € M such that ||x — yo|| = dist(x, M).

Proof: “By moving” the set M we can assume that T S

x = 0. Then the theorem takes the form: / M ‘n"

In a closed and convex set M there is

exactly one element with minimal norm: "\. Yo /
3! = inf ||yl siadl

woem [Iyoll = inf iy R




“Existence”. Let d := inf llyll and let {y,}52; € M such that
€

lynl| — d. It suffices to show that {y,}°, is Cauchy, as then by
completeness of M, the sequence is convergent to some yy € M and

then [lyoll = limp—oo |lynll = d.
2[lyall? + 2llymlI* = [IYn + Ym

yn_;ymuz {YH‘SYm c M

as M convex

||2 parallelogram

law

lyn — I?

= 2llyall? + 2llym|* — 4]

2 nmﬂoo

< 2[|ynll? + 2|lym||* — 4d 2d2 +2d? — 4d% = 0.

“Uniqueness”. If y;, y» € M are such that ||y1|| = ||ly2|| = d, then the
above calculations show that y; = y». Indeed
o parallelogram

law
= 2|y |2 + 2|y — 4 || 2k |? {

<20yl + 2lly2 12 — 4d? = 2d% + 2d% — 4d? = 0. -
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2[lyal? + 2212 = lly1 + y2®

}’n'fz‘}’m c M

as M convex

1 = yell



Thm. On the existence of orthogonal projection

For a closed subspace M C H of the Hilbert space H and a point
x € H there exists an orthogonal projection y = Pyx. Moreover

Ix =yl = dist(x, M) (1)

and the vector y is determined uniquely by this equality.

Proof: Since M is convex, by the previuous theorem there is exactly
one y € M satisfying (1).
We need to show that x —y 1. M. Let z € M. For t € IF we have

(1)
Ix=yl? < lx=(y+e2)]>=(x—y)+tz|]?
y+tzeM

= [x = ylI> = 2Re (x — y, tz) + [t]?||z]]%.

Hence 0 < |t|?||z]|?> — 2Re (x — y, tz) for t € F. Putting t = se’?,
where s € R and ¢ := arg(x — y, z) this inequality assumes the form

0 < ?[e"|z|? —2sRe(e™" (x — y,2)) = 5°||z]|* — 25| (x =y, 2) |.
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So the quadratic function f(s) = s2||z||> — 2s| (x — y, z) | is
nonnegative. Since f(0) = 0, its discriminant A = 4|(x — y, )| has to
be zero. Thus (x —y,z) =0, thatis x —y L z. [ |

Cor. (Hilbert space decomposition) For any closed subspace M of
the Hilbert space H we have

H=Mao M*,

that is Ver E”}’EME”ZEML X = y+Z

Proof: Let x € H. Put y := Pyyx and z:= x —y. Then x = y + z and
from the definition of projection we have y € M and x — y 1L M, i.e.

z € M. To show the uniqueness of this decomposition let us assume
that x = y' + 2’ for some y’ € M and 2/ € M*. Then

y—y =72 —z

Buty —y' € M, z—z' € M+ and M N M+ = {0} (zero is the only
isotropic vector). Hence y = y’ and z = 2. [ |
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Rem. The above corollary can also be written as
1 ES P/\/[ + PML,

where 1 is the identity operator on H and P, is the map

H > x — Pyx € M C H. In particular, if Py, is the orthogonal
projection onto a closed subspace M, then 1 — Py, is the
projection onto its orthogonal complement M+*:

PML:].—PM

Cor. (M*)+ = M for any closed subspace M C H.
Proof: P(ML)L =1—Py.=1- (1 — PM) = Py. [ ]

Prop. The orthogonal projection Py, is a bounded linear operator
of norm 1 (unless M = {0} and then Py = 0).

Proof: ...
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“Linearity”. Let x,y € H and o, 3 € F. We want to show that
Pu(ax + By) = aPuyx + BPuy. By definition Py(ax + By) is the
unique element in M such that (ax + By) — Py(ax + By) L M. It is
therefore sufficient to show that the vector aPpx + BPyy has the
same properties. It is clear that aPyx + BPyy € M as M is a linear
space. From the linearity of the inner product, for z € M we get

((ax + By) = (aPmx + BPmy), z) = alx — Pyx, z) + B{y — Pmy, 2)
=0,

because x — Py;x and y — Pyy are orthogonal to M by definition of
projection. Hence (ax + By) — (aPpx + BPumy) L M.

“Boundedness”. For any x € H we have

-
1Pux|? < [Pmx|? + [Puex|? = dm = |Prx + Ppex]®
Pitagoras
1=Py+P,,1
=" |IxI2.

Thus ||Py]| < 1. If Py #0, then M # {0} and there is x € M with
norm 1. Since Pyx = x, we get ||Pyx|| = ||x|| =1, and so ||Pu]| > 1.
Hence ||Py|| = 1. [ |
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Thm. Let P : H — H be a linear idempotent, that is P> = P. TCAE:
@ P is an orthogonal projection (onto PH),
@ P is self-adjoint, i.e. Vi yen (Px,y) = (x, Py) (P = P*),

@ P is a contraction, i.e. ||P]| < 1 (more precisely ||P|| =1 or P =0).

Proof: (1)=-(2). For x,y € H we have

(Px, y) y=Py+(1-P)y

(Px, Py) + (Px, (1 — P)y) TP

x=Px+(1—P)x

(Px, Py)

PH1(1—-P)H
el (x, Py).

(Px, Py) +{(1 = P)x, Py)
(2)=(3). For any x € H we get

(2) P —p Schwartz
1Px|[ = (Px, Px) = (P(Px), x) (Px,x) < [IPx]| - il

(3)=(1). We need to show that x — Px L PH dla x € H.
Hint: Let x € ker P and y € PH. Then for t € IF we get

PI<
Iyll? = lIPy + tPx|[ = [|P(y + t><)H2 < Hy + x| = [ly[? + 2Re t(x, y) + [¢]2]|x]1%.

Hence f(s) = 2s|(x, y)| + s?||x||> > 0, which implies that (x,y) = 0. 9/ 10



Let H = L?(p), where (Q, %, it) is a measure space.

Ex. (Multiplication by an indicator function)

If A€ ¥, then M := {f € L2(u) : f is zero outside A} is a closed
subspace of H, and the orthogonal projection from L?(11) onto M is the
operator of multiplication by the indicator function 1 4 of A:

Puyf =14-f, fel?(p)

Ex. (Conditional expectation)

If F is a o-subalgebra of ¥, M := {f € L?(p) : f is F-measurable} is a
closed subspace of H. The orthogonal projection from L?(j) onto M.
in probability theory is called the conditional expected value with
respect to F

Puf = E(f,F), f e L2(p).

(1) Pwmf is F-measurable for every f € L2(p),
(2) [yPufdu= [,fdufor Ac Fand f € L?(p).




